RAFT-based Polystyrene and Polyacrylate Melts under Thermal and Mechanical Stress
نویسندگان
چکیده
Although controlled/living radical polymerization processes have significantly facilitated the synthesis of welldefined low polydispersity polymers with specific functionalities, a detailed and systematic knowledge of the thermal stability of the products−highly important for most industrial processes−is not available. Linear polystyrene (PS) carrying a trithiocarbonate mid-chain functionality (thus emulating the structure of the Z-group approach via reversible addition−fragmentation chain transfer (RAFT) based macromolecular architectures) with various chain lengths (20 kDa ≤ Mn,SEC ≤ 150 kDa, 1.27 ≤ Đ = Mw/ Mn ≤ 1.72) and chain-end functionality were synthesized via RAFT polymerization. The thermal stability behavior of the polymers was studied at temperatures ranging from 100 to 200 °C for up to 504 h (3 weeks). The thermally treated polymers were analyzed via size exclusion chromatography (SEC) to obtain the dependence of the polymer molecular weight distribution on time at a specific temperature under air or inert atmospheres. Cleavage rate coefficients of the mid-chain functional polymers in inert atmosphere were deduced as a function of temperature, resulting in activation parameters for two disparate Mn starting materials (Ea = 115 ± 4 kJ·mol−1, A = 0.85 × 10 ± 1 × 10 s−1, Mn,SEC = 21 kDa and Ea = 116 ± 4 kJ·mol−1, A = 6.24 × 10 ± 1 × 10 s−1, Mn,SEC = 102 kDa). Interestingly, the degradation proceeds significantly faster with increasing chain length, an observation possibly associated with entropic effects. The degradation mechanism was explored in detail via SEC−ESI−MS for acrylate based polymers and theoretical calculations suggesting a Chugaev-type cleavage process. Processing of the RAFT polymers via small scale extrusion as well as a rheological assessment at variable temperatures allowed a correlation of the processing conditions with the thermal degradation properties of the polystyrenes and polyacrylates in the melt.
منابع مشابه
Thermal Stress Analysis of a Composite Cylinder Reinforced with FG SWCNTs
Thermal stress analysis of a thick-walled cylinder reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) is considered in radial direction. Thick-walled cylinder is subjected to a thermal field. Two layouts of variations in the volume fraction of SWCNTs were considered in the composite cylinder along the radius from inner to outer surface, where their names are increm...
متن کاملStress Analysis of Rotating Thick Truncated Conical Shells with Variable Thickness under Mechanical and Thermal Loads
In this paper, thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, internal pressure and external pressure is presented. Given the existence of shear stress in the conical shell due to thickness change along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are so...
متن کاملEvaluation of Thermo-mechanical stress in work rolls of ring rolling mill under thermal and mechanical loading
The defect in work rolls directly influence the forming cost and the final shape of the product. The researchers tend to investigate the thermo-mechanical stress in work roll of rolling machines. These stresses may reduce the roll life. Since the investigation of the thermo-mechanical stress in work roll with real-conditions is complex, comprehensive studies by means of numerical methods are av...
متن کاملA comparative study on pile group and piled raft foundations (PRF) behavior under seismic loading
Study on the seismic behavior of piled rafts and pile groups while the same amount of construction material and excavation is used in their construction, are the main objective of this research. The process where the raft interaction with soil can affect the seismic response and stress distribution is also discussed in the current study. By means, ABAQUS software was applied for the finite elem...
متن کاملMagneto-Thermo-Elastic Behavior of Cylinder Reinforced with FG SWCNTs Under Transient Thermal Field
In this article, magneto-thermo-elastic stresses and perturbation of magnetic field vector are analyzed for a thick-walled cylinder made from polystyrene, reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) in radial direction, while subjected to an axial and uniform magnetic field as well as a transient thermal field. Generalized plane strain state is considered in...
متن کامل